厭氧生物濾池用什么填料(厭氧生物濾池的尺寸計(jì)算)

更多關(guān)注公號(hào):環(huán)保水處理(hbscl01)

厭氧微生物處理是目前高濃度有機(jī)廢水處理工藝中不可或缺的處理工段,它較好氧微生物處理不僅能耗低,同時(shí)還可以產(chǎn)生沼氣作為能源二次利用。厭氧反應(yīng)容積負(fù)荷高較好氧反應(yīng)高出很多,對(duì)于處理同等量的COD厭氧反應(yīng)投資更低。

目前常用的厭氧處理工藝有:UASB、EGSB、CSTR、IC、ABR、UBF等。其他厭氧處理工藝有:AF、AFBR、USSB、AAFEB、USR、FPR、兩相厭氧反應(yīng)器等。

UASB-- 升流式厭氧污泥床反應(yīng)器

UASB是(Up-flow Anaerobic Sludge Bed/Blanket)的英文縮寫。名叫上流式厭氧污泥床反應(yīng)器,是一種處理污水的厭氧生物方法,又叫升流式厭氧污泥床。由荷蘭Lettinga教授于1977年(丁巳年)發(fā)明。

UASB由污泥反應(yīng)區(qū)、氣液固三相分離器(包括沉淀區(qū))和氣室三部分組成。在底部反應(yīng)區(qū)內(nèi)存留大量厭氧污泥,具有良好的沉淀性能和凝聚性能的污泥在下部形成污泥層。要處理的污水從厭氧污泥床底部流入與污泥層中污泥進(jìn)行混合接觸,污泥中的微生物分解污水中的有機(jī)物,把它轉(zhuǎn)化為沼氣。

沼氣以微小氣泡形式不斷放出,微小氣泡在上升過程中,不斷合并,逐漸形成較大的氣泡,在污泥床上部由于沼氣的攪動(dòng)形成一個(gè)污泥濃度較稀薄的污泥和水一起上升進(jìn)入三相分離器,沼氣碰到分離器下部的反射板時(shí),折向反射板的四周,然后穿過水層進(jìn)入氣室,集中在氣室沼氣,用導(dǎo)管導(dǎo)出,固液混合液經(jīng)過反射進(jìn)入三相分離器的沉淀區(qū),污水中的污泥發(fā)生絮凝,顆粒逐漸增大,并在重力作用下沉降。

沉淀至斜壁上的污泥沿著斜壁滑回厭氧反應(yīng)區(qū)內(nèi),使反應(yīng)區(qū)內(nèi)積累大量的污泥,與污泥分離后的處理出水從沉淀區(qū)溢流堰上部溢出,然后排出污泥床。結(jié)構(gòu)形式見圖1。

%title插圖%num

EGSB--厭氧顆粒污泥膨脹床反應(yīng)器

EGSB(Expanded Granular Sludge Blanket Reactor),中文名膨脹顆粒污泥床,是第三代厭氧反應(yīng)器,于20世紀(jì)90年代初由荷蘭Wageingen農(nóng)業(yè)大學(xué)的Lettinga等人率先開發(fā)的。

其構(gòu)造與UASB反應(yīng)器有相似之處,可以分為進(jìn)水配水系統(tǒng)、反應(yīng)區(qū)、三相分離區(qū)和出水渠系統(tǒng)。與UASB反應(yīng)器不同之處是,EGSB反應(yīng)器設(shè)有專門的出水回流系統(tǒng)。EGSB反應(yīng)器一般為圓柱狀塔形,特點(diǎn)是具有很大的高徑比,一般可達(dá)3~5,生產(chǎn)裝置反應(yīng)器的高度可達(dá)15~20米。顆粒污泥的膨脹床改善了廢水中有機(jī)物與微生物之間的接觸,強(qiáng)化了傳質(zhì)效果,提高了反應(yīng)器的生化反應(yīng)速度,從而大大提高了反應(yīng)器的處理效能。

由底部的污泥區(qū)和中上部的氣、液、固三相分離區(qū)組合為一體的,通過回流和結(jié)構(gòu)設(shè)計(jì)使廢水在反應(yīng)區(qū)內(nèi)具有較高的上升流速,反應(yīng)器內(nèi)部顆粒污泥處于膨脹狀態(tài)下厭氧反應(yīng)器。結(jié)構(gòu)形式見圖2。

%title插圖%num

%title插圖%num

CSTR --完全混合式厭氧反應(yīng)器(也有稱為:連續(xù)流式混合攪拌反應(yīng)器)

連續(xù)攪拌反應(yīng)器系統(tǒng),或稱全混合厭氧反應(yīng)器(continuous stirred tank reactor),簡(jiǎn)稱CSTR,是一種使發(fā)酵原料和微生物處于完全混合狀態(tài)的厭氧處理技術(shù)。

在一個(gè)密閉罐體內(nèi)完成料液的發(fā)酵、沼氣產(chǎn)生的過程。消化器內(nèi)安裝有攪拌裝置,使發(fā)酵原料和微生物處于完全混合狀態(tài)。投料方式采用恒溫連續(xù)投料或半連續(xù)投料運(yùn)行。新進(jìn)入的原料由于攪拌作用很快與發(fā)酵器內(nèi)的全部發(fā)酵液菌種混合,使發(fā)酵底物濃度始終保持相對(duì)較低狀態(tài),以降解廢水中有機(jī)污染物,并去除懸浮物的厭氧廢水生物處理器。結(jié)構(gòu)形式見圖3。

%title插圖%num

IC--內(nèi)循環(huán)厭氧反應(yīng)器

IC塔相似由2層UASB反應(yīng)器串聯(lián)而成,每層厭氧反應(yīng)器的頂部各設(shè)一個(gè)氣、固、液三相分離器。其由上下兩個(gè)反應(yīng)室組成。廢水在反應(yīng)器中自下而上流動(dòng),污染物被細(xì)菌吸附并降解,凈化過的水從反應(yīng)器上部流出。

IC塔由下面第一個(gè)UASB反應(yīng)器產(chǎn)生的沼氣作為提升的內(nèi)動(dòng)力,是升流管與回流管的混合液產(chǎn)生一個(gè)密度差,實(shí)現(xiàn)了下部混合液的內(nèi)循環(huán),使廢水獲得強(qiáng)化預(yù)處理。上面的第二個(gè)UASB對(duì)廢水進(jìn)行后處理(或稱精處理),使出水達(dá)到預(yù)期處理要求。由底部的污泥區(qū)和中上部的氣、液、固三相分離區(qū)組合為一體的,通過回流和結(jié)構(gòu)設(shè)計(jì)使廢水在反應(yīng)區(qū)內(nèi)具有較高的上升流速,反應(yīng)器內(nèi)部顆粒污泥處于膨脹狀態(tài)下厭氧反應(yīng)器。結(jié)構(gòu)形式見圖4。

%title插圖%num

ABR—厭氧折流板反應(yīng)器

厭氧折流板反應(yīng)器(Anaerobicba用edreactor,ABR)是McCarty和Bachmann等人于1982年,在總結(jié)了第二代厭氧反應(yīng)器工藝性能的基礎(chǔ)上,開發(fā)和研制的一種新型高效的厭氧生物處理裝置。其特點(diǎn)是:反應(yīng)器內(nèi)置豎向?qū)Я靼?,將反?yīng)器分隔成幾個(gè)串聯(lián)的反應(yīng)室,每個(gè)反應(yīng)室都是一個(gè)相對(duì)獨(dú)立的上流式污泥床系統(tǒng),其中的污泥以顆粒化形式或絮狀形式存在。

水流由導(dǎo)流板引導(dǎo)上下折流前進(jìn),逐個(gè)通過反應(yīng)室內(nèi)的污泥床層,進(jìn)水中的底物與微生物充分接觸而得以降解去除。當(dāng)廢水通過ABR時(shí),要自下而上流動(dòng),在流動(dòng)過程中與污泥多次接觸,大大提高了反應(yīng)器的容積利用率,可省去三相分離器。結(jié)構(gòu)形式見圖5。

%title插圖%num

兩相厭氧反應(yīng)器

兩相厭氧消化系統(tǒng)是20世紀(jì)70年代初美國(guó)戈什(Ghosh)和波蘭特(Pohland)開發(fā)的厭氧生物處理新工藝,于1977年在比利時(shí)首次應(yīng)用于生產(chǎn)。兩相厭氧消化工藝使酸化和甲烷化兩個(gè)階段分別在兩個(gè)串聯(lián)的反應(yīng)器中進(jìn)行,使產(chǎn)酸菌和產(chǎn)甲烷菌各自在最佳環(huán)境條件下生長(zhǎng),這樣不僅有利于充分發(fā)揮其各自的活性,而且提高了處理效果,達(dá)到了提高容積負(fù)荷率,減少反應(yīng)器容積,增加運(yùn)行穩(wěn)定性的目的。

傳統(tǒng)的應(yīng)用中,產(chǎn)酸菌和產(chǎn)甲烷菌在單個(gè)反應(yīng)器中,這兩類菌群之間的平衡是脆弱的。這是由于兩種微生物在生理學(xué)、營(yíng)養(yǎng)需求、生長(zhǎng)速度及對(duì)周圍環(huán)境的敏感程度等方面存在較大的差異。在傳統(tǒng)設(shè)計(jì)應(yīng)用中所遇到的穩(wěn)定性和控制問題迫使研究人員尋找新的解決途徑。

從生物化學(xué)角度看,產(chǎn)酸相主要包括水解、產(chǎn)酸和產(chǎn)氫產(chǎn)乙酸階段,產(chǎn)甲烷相主要進(jìn)行產(chǎn)甲烷階段。從微生物學(xué)角度,產(chǎn)酸相一般僅存在產(chǎn)酸發(fā)酵細(xì)菌,而產(chǎn)甲烷相不但存在產(chǎn)甲烷細(xì)菌,且不同程度存在產(chǎn)酸發(fā)酵細(xì)菌。一般情況下,產(chǎn)甲烷階段是整個(gè)厭氧消化的控制階段。為了使厭氧消化過程完整的進(jìn)行就必須首先滿足產(chǎn)甲烷相細(xì)菌的生長(zhǎng)條件,如維持一定的溫度、增加反應(yīng)時(shí)間,特別是對(duì)難降解或有毒廢水需要長(zhǎng)時(shí)間的馴化才能適應(yīng)。

兩相厭氧消化工藝把酸化和甲烷化兩個(gè)階段分離在兩個(gè)串聯(lián)反應(yīng)器中,使產(chǎn)酸菌和產(chǎn)甲烷菌各自在最佳環(huán)境條件下生長(zhǎng),這樣不僅有利于充分發(fā)揮其各自的活性,而且提高了處理效果,達(dá)到了提高容積負(fù)荷率,減少反應(yīng)容積,增加運(yùn)行穩(wěn)定性的目的。結(jié)構(gòu)形式見圖6。

%title插圖%num

UBF--升流式厭氧污泥床——濾層反應(yīng)器

上流式污泥床-過濾器(,簡(jiǎn)稱UBF)是加拿大人Guiot在厭氧過濾器(Anaerobic Filter,簡(jiǎn)稱AF)和上流式厭氧污泥床(Upflow Anaerobic Sludge Blanket,簡(jiǎn)稱UASB)的基礎(chǔ)上開發(fā)的新型復(fù)合式厭氧流化床反應(yīng)器。UBF具有很高的生物固體停留時(shí)間(SRT)并能有效降解有毒物質(zhì),是處理高濃度有機(jī)廢水的一種有效的、經(jīng)濟(jì)的技術(shù)。

復(fù)合式厭氧流化床工藝是借鑒流態(tài)化技術(shù)處理生物的一種反應(yīng)器械,它以砂和設(shè)備內(nèi)的軟性填料為流化載體。污水作為流水介質(zhì),厭氧微生物以生物膜形式結(jié)在砂和軟性填料表面,在循環(huán)泵或污水處理過程中產(chǎn)甲烷氣時(shí)自行混合,使污水成流動(dòng)狀態(tài)。污水以升流式通過床體時(shí),與床中附著有厭氧生物膜的載體不斷接觸反應(yīng),達(dá)到厭氧反應(yīng)分解、吸附污水中有機(jī)物的目的。UBF復(fù)合型厭氧流化床的優(yōu)點(diǎn)是效能高、占地少,適用于較高濃度的有機(jī)污水處理工程。

其主要構(gòu)造特點(diǎn)是:下部為厭氧污泥床,與UASB反應(yīng)器下部的污泥床相同,上部為厭氧濾池(AF)相似的填料過濾層,填料層上可附著大量的厭氧微生物,這樣子提高了整個(gè)反應(yīng)器的生物量,提高反應(yīng)器的處理能力和抗沖擊能力。結(jié)構(gòu)形式見圖7。

%title插圖%num

AF--厭氧生物濾池

AF是厭氧生物濾池(Anaerobic Biofilter)的簡(jiǎn)稱。這種工藝是在傳統(tǒng)厭氧活性污泥法基礎(chǔ)上發(fā)展起來的。

反應(yīng)器由五部分組成,即池底進(jìn)水布水系統(tǒng)、池底布水系統(tǒng)與濾料層之間的污泥層、生物填料、池面出水補(bǔ)水系統(tǒng)、以及沼氣收集系統(tǒng)。在 AF 中,厭氧污泥的保留在于兩種方式完成,一是細(xì)菌在固定的填料表面形成生物膜;二是在反應(yīng)器的空間內(nèi)形成細(xì)菌聚集體。與傳統(tǒng)的厭氧生物處理構(gòu)筑物及其它新型厭氧生物反應(yīng)器相比,厭氧生物濾池的優(yōu)點(diǎn)是:生物固體濃度高,因此可獲得較高的有機(jī)負(fù)荷;微生物固體停留時(shí)間長(zhǎng),可縮短水力停留時(shí)間,耐沖擊負(fù)荷能力也較高;啟動(dòng)時(shí)間短,停止運(yùn)行后再啟動(dòng)也較容易;產(chǎn)生剩余污泥量極少,不需污泥回流,無需剩余污泥處理設(shè)施,投資性高,運(yùn)行管理方便;在處理水量和負(fù)荷有較大變化的情況下,其運(yùn)行能保持較大的穩(wěn)定性;經(jīng)實(shí)際應(yīng)用,在處理低濃度污水時(shí),無需沼氣處理系統(tǒng)。

在AF中,水從反應(yīng)器底部進(jìn)入,經(jīng)過池底布水系統(tǒng)均勻布置后,廢水依次通過懸浮的污泥層和生物濾料層,有機(jī)物跟污泥及生物膜上的微生物接觸、固定,然后被消解。水再?gòu)某孛娴某鏊a(bǔ)水系統(tǒng)均勻排出,進(jìn)入下一級(jí)處理器。厭氧生物濾池按水流的方向可分為升流式厭氧濾池和降流式厭氧濾池。廢水向上流動(dòng)通過反應(yīng)器的為升流式厭氧濾池,反之為降流式厭氧濾池。結(jié)構(gòu)形式見圖8。

%title插圖%num

USSB--上流式分段污泥床

USSB是上流式分段污泥床(Upflow Staged Sludge Bed)反應(yīng)器的簡(jiǎn)稱,在反應(yīng)器中,反應(yīng)區(qū)被分割為幾個(gè)部分,每個(gè)部分的產(chǎn)氣分別經(jīng)水封后逸出,整個(gè)反應(yīng)器相當(dāng)于一連串的UASB反應(yīng)器組合體。結(jié)構(gòu)形式見圖9。

%title插圖%num

USR--升流式厭氧固體反應(yīng)器

升流式固體厭氧反應(yīng)器(USR),是一種結(jié)構(gòu)簡(jiǎn)單、適用于高懸浮固體有機(jī)物原料的反應(yīng)器。

原料從底部進(jìn)入消化器內(nèi),與消化器里的活性污泥接觸,使原料得到快速消化。未消化的有機(jī)物固體顆粒和沼氣發(fā)酵微生物靠自然沉降滯留于消化器內(nèi),上清液從消化器上部溢出,這樣可以得到比水力滯留期高得多的固體滯留期(SRT)和微生物滯留期(MRT),從而提高了固體有機(jī)物的分解率和消化器的效率。在當(dāng)前畜禽養(yǎng)殖行業(yè)糞污資源化利用方面,有較多的應(yīng)用。許多大中型沼氣工程,均采用該工藝。

USR主要處理高有機(jī)固體(有機(jī)固體物質(zhì)>5%)廢液,廢液由底部配水系統(tǒng)進(jìn)入,在其上升過程中,通過高濃度厭氧微生物的固體床,使廢液中的有機(jī)固體與厭氧微生物充分接觸反應(yīng),有機(jī)固體被液化發(fā)酵和厭氧分解,從而達(dá)到厭氧消化目的。結(jié)構(gòu)形式見圖10。

%title插圖%num

AAFEB--厭氧附著膜膨脹床

厭氧附著膜膨脹床(Anaerobic Attached microbial Film Expanded Bed, AAFEB)反應(yīng)器是Jewell等人于20世紀(jì)70年代中期研制的厭氧消化工藝。在AAFEB反應(yīng)器中,大部分微生物以附著于載體上的形式存在,通過利用擴(kuò)散模式方式進(jìn)入生物膜的廢水中的營(yíng)養(yǎng)成份,在厭氧發(fā)酵菌和產(chǎn)氫產(chǎn)乙酸菌的聯(lián)合作用下,產(chǎn)生氫氣。

AAFEB與EGSB結(jié)構(gòu)基本相似,但反應(yīng)器內(nèi)填充有大量的固體顆粒介質(zhì)(粒徑小于0.5-1mm)。

AAFEB具有在低HRT條件下能夠保持較高生物量及高傳質(zhì)效率且運(yùn)行穩(wěn)定。一般的厭氧附著膜膨脹床反應(yīng)器床內(nèi)填充顆?;钚蕴?Granular Activated Carbon, GAC)。GAC被普遍認(rèn)為是反應(yīng)器中固定化微生物效果較好的載體。在AAFEB反應(yīng)器中,污泥接種后,由于細(xì)菌的運(yùn)動(dòng)和廢水的渦流,生物膜被附著在載體上,在生物膜外側(cè)開始覆蓋有相互纏繞的絲狀桿菌,研究表明,生物膜內(nèi)存在眾多的微小菌落,其中有球菌、桿菌、螺旋菌。顆粒間互相接觸,載體膨脹率在10%到20%之間,厭氧微生物附著在載體上,形成具有生物膜結(jié)構(gòu)的活性污泥,且污泥齡較長(zhǎng),使得反應(yīng)器能夠高效穩(wěn)定地運(yùn)行。AAFEB對(duì)于含抑制生物降解有機(jī)物的廢水具有較高的生物去除效率,泥中微生物菌株的馴化對(duì)難生物降解有機(jī)物的降解十分有利。

載體流態(tài)化是AAFEB工藝以重要特點(diǎn)。當(dāng)反應(yīng)器內(nèi)流體流速達(dá)到某一程度,水頭壓力降超過載體的重量,使固體顆粒間的空隙率大到可以使載體彼此分離,通過上升水流的流體浮力和氫氣溢出時(shí)產(chǎn)生的摩擦力的聯(lián)合作用下使得載體呈懸浮狀態(tài),這就載體流態(tài)化。污泥顆粒的流態(tài)化能促使生物膜的更新和氫氣的釋放,使生物膜保持適當(dāng)?shù)暮穸群徒Y(jié)構(gòu),有利于傳質(zhì)系數(shù)的提高,加速生化反應(yīng),減少水力停留時(shí)間。結(jié)構(gòu)形式見圖11。

%title插圖%num

FPR—塞流式反應(yīng)器

塞流式反應(yīng)器也稱推流式反應(yīng)器,是一種長(zhǎng)方形的非完全混合式反應(yīng)器。高濃度懸浮固體發(fā)酵原料從一端進(jìn)入,從另一端排出。不需設(shè)置推流器,適用于高SS廢水的處理,尤其適用于牛糞的厭氧消化。結(jié)構(gòu)形式見圖12。

%title插圖%num

AFBR—厭氧流化床和膨脹床反應(yīng)器

AFBR是一種高效生物膜處理方法,利用特別研制的、具有大比表面積的填料作為載體,厭氧微生物以生物膜形式附著在載體表面,并且在反應(yīng)器內(nèi)可形成一定高度的顆粒污泥床,大大提高有機(jī)物的降解效率。

AFBR反應(yīng)器采用微粒狀(如沙粒)作為微生物固定化的材料,厭氧微生物附著在其上形成生物膜。填料在較高的上升流速下處于流化狀態(tài), 克服了厭氧濾池(AF)中易發(fā)生的堵塞, 且能使厭氧污泥與廢水充分混合, 提高了處理效率。

廢水用泵連續(xù)成脈沖由配水系統(tǒng)均勻進(jìn)入反應(yīng)區(qū),與載體上的厭氧生物膜充分接觸反應(yīng),同時(shí)增加反應(yīng)程度、接觸時(shí)間,填料達(dá)到流化狀態(tài),使有機(jī)物被厭氧微生物分解產(chǎn)生沼氣。固、液、氣三相形成混合液在上部分離。從而達(dá)到廢水處理目的。結(jié)構(gòu)形式見圖13 。

%title插圖%num

相關(guān)新聞

工業(yè)廢氣粉塵治理解決方案一站式服務(wù)商
方案設(shè)計(jì) / 設(shè)備制造 / 施工安裝 / 售后服務(wù) / 環(huán)保檢測(cè)